语音识别技术中提取的声音特征的参数具体指什么?

发布网友 发布时间:2022-04-20 07:31

我来回答

3个回答

热心网友 时间:2023-07-12 22:40

根据语音识别实际应用中的不同,语音识别系统可以分为:特定人与非特定人的语音识别、独立词与连续词的语音识别、小词汇量与大词汇量以及无限词汇量的语音识别。但无论哪种语音识别系统,其基本原理和处理方法大体相同。语音识别原理语音信号输入之后,预处理和数字化是进行语音识别的前提条件。其中,预处理主要是进行预滤波,保留正常人的300~3400Hz的语音信号;数字化是要进行A/D转换及抗混叠等处理;特征提取是进行语音信号训练和识别必不可少的步骤。能够体现语音信号特征的参数包括:(1)基于LPC的倒谱参数;(2)Mel系数的倒谱参数;(3)采用前沿数字信号处理技术的特征分析手段,如小波分析、时/频域分析、人工神经网络等。本文采用基于LPC的倒谱参数表示方法,提取出的特征值存入参考模式库中,用来匹配待识别语音信号的特征值。匹配计算是进行语音识别的核心部分,由待识别人的语音经过特征提取后,与系统训练时产生的模板进行匹配,在说话人辨认中,取与待识别语音相似度最大的模型所对应的语音作为识别结果,这就是语音识别的整个过程。语音识别技术从应用类分为特定人语音识别和非特定人语音识别。特定人语音识别技术是针对指定人的语音识别,其他人的话玩具不识别,应用模式是使用前需要指定人的语音训练过程,一般按照玩具提示训练2遍语音词条,然后就可以使用了;非特定人语音识别是不用针对指定的人的识别技术,不分年龄,性别,只要说相同语言就可以,应用模式是在产品定型前按照确定的十几个语音交互词条,采集200人左右的声音样本,经过我们的PC算法处理得到交互词条的语音模型和特征数据库,然后烧录到我们的芯片上,应用我们芯片的玩具就具有交互的功能了。非特定人语音识别应用有的是基于音素的算法,这种模式下不需要采集很多人的声音样本,就可以做交互识别,但是缺点是识别率不高,识别性能不稳定。在PC领域,Microsoft的Word软件就有语音识别技术

热心网友 时间:2023-07-12 22:40

语音识别系统:
原理请参考:http://www.hu.com/question/20398418
语音识别技术的应用可以分为两个发展方向:一个方向是大词汇量连续语音识别系统,主要应用于计算机的听写机,以及与电话网或者互联网相结合的语音信息查询服务系统,这些系统都是在计算机平台上实现的;另外一个重要的发展方向是小型化、便携式语音产品的应用,如无线手机上的拨号、汽车设备的语音控制、智能玩具、家电遥控等方面的应用,这些应用系统大都使用专门的硬件系统实现,特别是近几年来迅速发展的语音信号处理专用芯片(Application Specific Integrated Circuit,ASIC)和语音识别片上系统(System on Chip,SOC)的出现。
特点:智能识别。

功能特点:
对比语音识别技术的两个发展方向,由于基于不同的运算平台,因此具有不同的特点。大词汇量连续语音识别系统一般都是基于PC机平台,而语音识别专用芯片的中心运算处理器则只是一片低功耗、低价位的智能芯片,与一台甚至多台PC机相比起来,其运算速度,存储容量都非常有限,因而这些由专用芯片实现的语音识别系统有如下几个特点:
1、多为中、小词汇量的语音识别系统,即只能够识别10~100词条。只有近一两年来,才有连续数码或连续字母语音识别专用芯片实现。
2、一般仅限于特定人语音识别的实现,即需要让使用者对所识别的词条先进行学习或训练这一类识别功能对语种、方言和词条没有*。有的芯片也能够实现非特定人语音识别,即预先将所要识别的语句码本训练好而装入芯片,用户使用时不需要再进行学习而直接应用。但这一类识别功能只适用于规定的语种和方言,而且所识别的语句只限于预先已训练好的语句。
3、由此芯片组成一个完整的语音识别系统。因此,除了语音识别功能以外,为了有一个好的人机界面和识别正确与否的验证,该系统还必须具备语音提示(语音合成)及语音回放(语音编解码记录)功能。
4、多为实时系统,即当用户说完待识别的词条后,系统立即完成识别功能并有所回应,这就对电路的运算速度有较高的要求。
5、除了要求有尽可能好的识别性能外,还要求体积尽可能小、可靠性高、耗电省、价钱低等特点。

热心网友 时间:2023-07-12 22:41

语音识别是什么原理?为啥知道我们说的是什么?

声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com