发布网友 发布时间:2022-04-20 01:38
共3个回答
热心网友 时间:2022-05-23 15:51
阿基米德螺线的面积=(1/2)aθ(a²+a²θ²)^(1/2)dθ
以θ作为积分参变量,得到面积元素:
dA=(aθ)²/2dθ
A=a²/2∫[0,2π]θ²dθ
=4a²π³/3
其中 a 和 b 均为实数。当 时,a为起点到极坐标原点的距离。 ,b为螺旋线每增加单位角度r随之对应增加的数值。改变参数 a相当于旋转螺线,而参数 b 则控制相邻两条曲线之间的距离。
阿基米德螺线的平面笛卡尔坐标方程式为:
通用的从极坐标系到笛卡尔坐标系的变换方法:
通用的从笛卡尔坐标系到极坐标系的变换方法:
扩展资料
阿基米德螺线的画法
1.阿基米德螺线的几何画法
以适当长度(OA)为半径,画一圆O;作一射线OA;作一点P于射线OA上;模拟点A沿圆O移动,点P沿射线OA移动;画出点P的轨迹;隐藏圆O、射线OA&点P;即可得到螺线
2.阿基米德螺线的简单画法
有一种最简单的方法画出阿基米德螺线,用一根线缠在一个线轴上,在其游离端绑上一小环,把线轴按在一张纸上,并在小环内套一支铅笔,用铅笔拉紧线,并保持线在拉紧状态,然后在纸上画出由线轴松开的线的轨迹,就得到了阿基米德螺线。
参考资料:百度百科 -螺线
参考资料:百度百科-阿基米德螺线
热心网友 时间:2022-05-23 15:51
已知阿基米德螺线的极坐标方程为:ρ=aθ.求θ∈[0,2π]时,螺线所围成的面积热心网友 时间:2022-05-23 15:52
是方法二错了