函数中存在反函数的条件是什么?

发布网友 发布时间:2022-04-20 12:27

我来回答

5个回答

热心网友 时间:2023-07-17 03:05

一函数f若要是一明确的反函数,它必须是一双射函数,即:

(单射)陪域上的每一元素都必须只被f映射到一次:不然其反函数将必须将元素映射到超到一个的值上去。

(满射)陪域上的每一元素都必须被f映射到:不然将没有办法对某些元素定义f的反函数。

若f为一实变函数,则若f有一明确反函数,它必通过水平线测试,即一放在f图上的水平线  必对所有实数k,通过且只通过一次。

扩展资料

反函数存在定理:

定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同。

在证明这个定理之前先介绍函数的严格单调性。

设y=f(x)的定义域为D,值域为f(D)。如果对D中任意两点x1和x2,当x1<x2时,有y1<y2,则称y=f(x)在D上严格单调递增;当x1<x2时,有y1>y2,则称y=f(x)在D上严格单调递减。

证明:设f在D上严格单增,对任一y∈f(D),有x∈D使f(x)=y。

而由于f的严格单增性,对D中任一x'<x,都有y'<y;任一x''>x,都有y''>y。总之能使f(x)=y的x只有一个,根据反函数的定义,f存在反函数f-1。

任取f(D)中的两点y1和y2,设y1<y2。而因为f存在反函数f-1,所以有x1=f-1(y1),x2=f-1(y2),且x1、x2∈D。

若此时x1≥x2,根据f的严格单增性,有y1≥y2,这和我们假设的y1<y2矛盾。

因此x1<x2,即当y1<y2时,有f-1(y1)<f-1(y2)。这就证明了反函数f-1也是严格单增的。

如果f在D上严格单减,证明类似。 

参考资料:百度百科-反函数

热心网友 时间:2023-07-17 03:05

求反函数基本方法是由原函数解得x,交换x、y,再求出原函数值域,即反函数定义域。当由原函数解出的x有多个值时,此函数不存在反函数,例如函数y=x平方-6,对于x有2个y值与之对应,因此不存在反函数。

热心网友 时间:2023-07-17 03:06

函数 在某个区间内 存在反函数的充要条件是 (从映射角度说),象(y) 与 原象(x) 一一对应

热心网友 时间:2023-07-17 03:06

是因为要满足一一映射吧。
在定义域内有单调性就是说一个x能够对应一个y,不会出现重复的。反过来也是一样,一个y也要只能对应一个x值才能有反函数
补充:对,就是这样,如果x的定义域是0到正无穷或负无穷是有反函数的,就是y=根号x或-根号x。
当定义域只有一半时,就是一一对应的了。

热心网友 时间:2023-07-17 03:07

函数中存在返函数的充分必要条件是这个函数必须是“一一对应”的。
这个证明并不复杂,只要你有高中水平的数学基础和数学思维就可以证明它。
声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com