复合函数怎么求导

发布网友 发布时间:2022-04-20 16:09

我来回答

2个回答

懂视网 时间:2023-02-13 18:42

复合函数求导方法是什么?让我们一起了解一下吧。

复合函数是指以一个函数作为另一个函数的自变量,如设f(x)=4x,g(x)=4x+4,g(f(x))就是一个复合函数,若h(a)=f[g(x)],则它的导数h'(a)=f'[g(x)]g'(x)。

几种常见函数的导数公式: ① C'=0(C为常数);② (x^n)'=nx^(n-1) (n∈Q); ③(sinx)'=cosx;④ (cosx)'=-sinx;⑤ (e^x)'=e^x;⑥ (a^x)'=a^xIna (ln为自然对数)。

今天的分享就是这些,希望能帮助到大家。

热心网友 时间:2023-02-13 15:50

复合函数求导的方法如下:

总的公式f'[g(x)]=f'(g)×g'(x)

比如说:求ln(x+2)的导函数

[ln(x+2)]'=[1/(x+2)] 注:此时将(x+2)看成一个整体的未知数x' ×1注:1即为(x+2)的导数。

主要方法:先对该函数进行分解,分解成简单函数,然后对各个简单函数求导,最后将求导后的结果相乘,并将中间变量还原为对应的自变量。

复合函数证明方法如下:

先证明个引理:

f(x)在点x0可导的充要条件是在x0的某邻域U(x0)内,存在一个在点x0连续的函数H(x),使f(x)-f(x0)=H(x)(x-x0)从而f'(x0)=H(x0)

证明:设f(x)在x0可导,令 H(x)=[f(x)-f(x0)]/(x-x0),x∈U'(x0)(x0去心邻域);H(x)=f'(x0),x=x0

因lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=f'(x0)=H(x0)

所以H(x)在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)

反之,设存在H(x),x∈U(x0),它在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)

因存在极限lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=lim(x->x0)f'(x)=H(x0)

所以f(x)在点x0可导,且f'(x0)=H(x0)

引理证毕。

设u=φ(x)在点u0可导,y=f(u)在点u0=φ(x0)可导,则复合函数F(x)=f(φ(x))在x0可导,且F'(x0)=f'(u0)φ'(x0)=f'(φ(x0))φ'(x0)

证明:由f(u)在u0可导,由引理必要性,存在一个在点u0连续的函数H(u),使f'(u0)=H(u0),且f(u)-f(u0)=H(u)(u-u0)

又由u=φ(x)在x0可导,同理存在一个在点x0连续函数G(x),使φ'(x0)=G(x0),且φ(x)-φ(x0)=G(x)(x-x0)

于是就有,f(φ(x))-f(φ(x0))=H(φ(x))(φ(x)-φ(x0))=H(φ(x))G(x)(x-x0)

因为φ,G在x0连续,H在u0=φ(x0)连续,因此H(φ(x))G(x)在x0连续,再由引理的充分性可知F(x)在x0可导,且

F'(x0)=f'(u0)φ'(x0)=f'(φ(x0))φ'(x0)

证法二:y=f(u)在点u可导,u=g(x)在点x可导,则复合函数y=f(g(x))在点x0可导,且dy/dx=(dy/)*(/dx)

证明:因为y=f(u)在u可导,则lim(Δu->0)Δy/Δu=f'(u)或Δy/Δu=f'(u)+α(lim(Δu->0)α=0)

当Δu≠0,用Δu乘等式两边得,Δy=f'(u)Δu+αΔu

但当Δu=0时,Δy=f(u+Δu)-f(u)=0,故上等式还是成立。

又因为Δx≠0,用Δx除以等式两边,且求Δx->0的极限,得

dy/dx=lim(Δx->0)Δy/Δx=lim(Δx->0)[f'(u)Δu+αΔu]/Δx=f'(u)lim(Δx->0)Δu/Δx+lim(Δx->0)αΔu/Δx

又g(x)在x处连续(因为它可导),故当Δx->0时,有Δu=g(x+Δx)-g(x)->0

则lim(Δx->0)α=0

最终有dy/dx=(dy/)*(/dx)

声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com