请问f(x)=tanx带皮亚诺余项的三阶麦克劳林公式是多少?

发布网友 发布时间:2022-04-20 18:30

我来回答

1个回答

热心网友 时间:2023-07-09 21:42

f(x)=tanx,
所以f '(x)=1/cos²x,
f "(x)= 2cosx*sinx / (cosx)^4 = 2sinx /(cosx)^3
f "'(x)= [2cosx*(cosx)^3 - 2sinx*3cos²x* (-sinx) ]/ (cosx)^6
于是当x=0时,
f(0)=0,f '(0)=1,f "(0)=0,f "'(0)=2
故f(x)=tanx带皮亚诺余项的三阶麦克劳林公式是,
f(x)=f(0)+f'(0)x+f''(0)/2!·x^2,+f'''(0)/3!·x^3 +o(x^n)
=0+ x + 0 + 2/3!·x^3 +o(x^n)
= x + x^3 /3 + o(x^n) 其中o(x^n)为公式的皮亚诺(Peano)余项
声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com