零基础学Python应该学习哪些入门知识

发布网友 发布时间:2022-03-03 02:43

我来回答

13个回答

热心网友 时间:2022-03-03 04:12

关于零基础怎么样能快速学好Python的问题,百度提问和解答的都很多,你可以百度下看看。我觉得从个人自学的角度出发,应从以下几个方面来理解:

1 为什么选择学python?

据统计零基础或非专业的人士学python的比较多,据HackerRank开发者调查报告2018年5月显示(见图),Python排名第一,成为最受欢迎编程语言。Python以优雅、简洁著称,入行门槛低,可以从事Linux运维、Python Web网站工程师、Python自动化测试、数据分析、人工智能等职位,薪资待遇呈上涨趋势。

2 入门python需要那些准备?

2.1 心态准备。编程是一门技术,也可说是一门手艺。如同书法、绘画、乐器、雕刻等,技艺纯熟的背后肯定付出了长时间的反复练习。不要相信几周速成,也不能急于求成。编程的世界浩瀚无边,所以请保持一颗敬畏的心态去学习,认真对待写下的每一行代码,甚至每一个字符。收拾好自己的心态,向着编程的世界出发。第一步至关重要,关系到初学者从入门到精通还是从入门到放弃。选一条合适的入门道路,并坚持走下去。

2.2 配置 Python 学习环境。选Python2 还是 Python3?入门时很多人都会纠结。二者只是程序不兼容,思想上并无大差别,语法变动也并不多。选择任何一个入手,都没有大影响。如果你仍然无法抉择,那请选择 Python3,毕竟这是未来的趋势。

编辑器该如何选?同样,推荐 pycharm 社区版,配置简单、功能强大、使用起来省时省心,对初学者友好,并且完全免费!其他编辑器如:notepad++、sublimeText 3、vim 和 Emacs等不推荐了。

操作环境?Python 支持现有所有主流操作平台,不管是 windows 还是 mac 还是 linux,都能很好的运行 Python。并且后两者都默认自带 Python 环境。

2.3 选择自学的书籍。我推荐的书的内容由浅入深,建议按照先后顺序阅读学习:

2.3.1《Python简明教程》。这是一本言简意赅的 Python 入门教程,简单直白,没有废话。就算没有基础,你也可以像读小说一样,花两天时间就可以读完。适合入门快速了解语法。

2.3.2 廖雪峰编写的《Python教程》。廖先生的教程涵盖了 Python 知识的方方面面,内容更加系统,有一定深度,有一定基础之后学习会有更多的收获。

2.4 学会安装包。Python中有很多扩展包,想要安装这些包可以采用两种方法:

2.4.1 使用pip或easy_install。

1)在网上找到的需要的包,下载下来。eg. rsa-3.1.4.tar.gz;

2)解压缩该文件;

3)命令行工具cd切换到所要安装的包的目录,找到setup.py文件,然后输入python setup.py install

2.4.2 不用pip或easy_install,直接打开cmd,敲pip install rsa。

3 提升阶段需要恒心和耐力。

完成入门阶段的基础学习之后,常会陷入一个瓶颈期,通过看教程很难进一步提高编程水平。这时候,需要的是反复练习,大量的练习。可以从书上的例题、作业题开始写,再写小程序片段,然后写完整的项目。我们收集了一些练习题和网站。可根据自己阶段,选择适合的练习去做。建议最好挑选一两个系列重点完成,而不是浅尝辄止。

3.1 多做练习。推荐网站练习:

crossin编程教室实例:相对于编程教室基础练习着重于单一知识点,

编程实例训练对基础知识的融会贯通;

hackerrank:Python 部分难度循序渐进,符合学习曲线

实验楼:提升编程水平从做项目开始;

codewar:社区型编程练习网站,内容由易到难;

leetcode:为编程面试准备,对初学者稍难;

牛客网:提供 BAT 等大厂笔试题目;

codecombat:提供一边游戏一边编程;

projecteuler:纯粹的编程练习网站;

菜鸟教程100例:基于 py2 的基础练习;

3.2 遇到问题多交流。

3.2.1 利用好搜索引擎。

3.2.2 求助于各大网站。推荐

stackoverflow:这是一个程序员的知识库;

v2ex:国内非常不错的编程社区,不仅仅是包含程序,也包含了程序员的生活;

segmentfault:一家以编程问答为主的网站;

CSDN、知乎、简书等

3.2.3 加入相关的QQ、微信群、百度知道。不懂的可以随时请教。

热心网友 时间:2022-03-03 05:30

链接:http://pan.baidu.com/s/1VFYbfZcE5a808W7ph9-qDQ

提取码:238d

零基础学python课程。Python是目前最流行的动态脚本语言之一。本课程由浅入深,全面、系统地介绍了使用Python进行开发的各种知识和技巧。 包括Python环境的安装和配置、Python的基本语法、模块和函数、内置数据结构、字符串和文件的处理、正则表达式的使用、异常的捕获和处理、面向对象的语言特性和设计、Python的数据库编程、Tkinter GUI库的使用、HTML应用、XML应用、Django网页开发框架的使用、测试驱动开发模式应用、Python中的进程和线程、Python系统管理、网络编程、Python图像处理、Python语言的扩展和嵌入以及Windows下Python开发等。

课程目录:

python语言的特点

python的发展历史与版本

python的安装

python程序的书写规则

基础数据类型

变量的定义和常用操作

序列的概念

字符串的定义和使用

......

热心网友 时间:2022-03-03 07:05

1、Python入门导学
Python的特性、优点、缺点、前景以及 python能做些什么?
2、Python环境安装
一键安装Python的编译环境,写出第一段Python代码
3、理解什么是写代码与Python的基本类型
Python的基本类型,包括整形、浮点型;10、8、2、16进制数的意义和转换关系;布尔类型;字符串与字符串常见运算操作
4、Python中表示“组”的概念与定义
了解“组”的概念,以及在Python中用来表示“组”的一些类型,包括:元组、列表、集合和字典。
5、变量与运算符
了解变量的意义与七种运算符,并对每一种运算符的扩展做出详细的讲解
6、分支、循环、条件与枚举
代码的基本逻辑结构,包括条件控制(if else)、循环控制(for in 、while)、表达式与运算符的优先级。此外,还有Python的枚举类型以及Python编码的规范。
7、包、模块、函数与变量作用域
了解Python代码的组织结构核心:包、模块与函数。需要对Python代码的组织结构有一个非常清晰的认识。重点是函数,除了了解函数的基本概念外,还需要了解Python灵活的函数参数机制(默认参数、关键字参数与列表参数)。
8、Python函数
函数是所有语言中都具备的基本代码组织结构。函数的重要性不言而喻。而对于Python来说,函数的用法及其灵活,远比其他语言要强大很多。了解Python函数的定义、调用、序列解包、必须参数、关键字参数、默认参数等诸多内容。
9、高级部分:面向对象
了解面向对象的概念。包括面向对象的三大特性(继承、封装、多态)、类的基本构成元素、python的内置类属性、方法重写、运算符重载、静态方法等
10、正则表达式与JSON
正则表达式也是文本解析中非常重要的知识点。了解如何在Python中编写正则表达式与常见的正则表达式。此外,重点了解包括JSON对象,JSON字符串,Python类型与JSON的转换。
11、Python的高级语法与用法
了解Python进阶部分的高级特性,如枚举、闭包
12、函数式编程: 匿名函数、高阶函数、装饰器
进一步了解函数式编程的lambda、mapece、filter以及装饰器
13、实战:原生爬虫
学习如何访问网络数据、获取与解析网络数据、爬虫的基本原理解释。并用最基础语法不使用爬虫框架的原生爬虫项目。
14、Pythonic与Python杂记
了解扩展Python的优秀写法,学会如何写出优质的Pythonic风格的代码。包括:如何让字典保持有序、lmbda表达式的应用等高级Python知识

热心网友 时间:2022-03-03 08:56

1、学习的时候,我们都是要从Python的基础语法开始学习 ,了解什么是Python的变量 什么是循环 什么是函数,什么是模块。类等等。总之,基础是学习以后高级开发的基石。
这个阶段可以,选择一些经典书籍或者视频进行学习。
书籍可以看看《python快乐编程—基础入门》这本书,是针对零基础学生来编写的书。

2、在学习完基础语法的时候,你也对python有了一定程度的了解了,也知道Python有很多的学习方向,比如说数据采集方向(爬虫),或者Web开发方向,也可能是最近特别火热的人工智能方向。每个方向所需要的技术都是不尽相同的,所以在我们学习完成Python的基础语法之后,一定要慎重选择自己之后的进阶方向。
3、在进阶阶段,建议以最新的python视频学习为主,相关书籍为辅,这个阶段主要是学的技术是最新的,不要给自己留一个学完之后技术已经过时的惨败后果。
此外还有一些小小的学习技巧分享给大家,希望大家调整好心态,坚持下去!
1.作为小白刚接触编程,理解起来慢很正常。不能理解的东西,也不要死磕太久,在不断的练习中,你对代码的理解会越来越深。
2.个人认为,人按学习能力可以暴力分为:上手快&忘得快,上手慢&理解深,上手快&理解深。好了,第三类人我就不想多说什么了。。。相信很多小伙伴都是第二类人!
3. 遇到问题,别死磕,多用搜索引擎,多看大牛的博客。
4. 觉得某个知识点时间花得久了,无非是想短时间投入,获得较大的成就感,或者说想一帆风顺敲代码,别遇到什么bug。不存在的。而且,一般情况下,花越多时间理解的知识点,花越多时间改好的bug,不是会获得越大的成就感才对嘛?!

热心网友 时间:2022-03-03 11:21

我这里有Python编程,开发,进阶,自动化,实战等系列视频教程,还有安装包,素材,代码等等内容,这里就不一一说了,全套内容一共300G左右,非常的详细,需要的请到网盘下载查看整体内容提取码:vxts

热心网友 时间:2022-03-03 14:19

只要好好学,找个好学校,还是很简单的。
1.汽修行业需求大,工作好找
2.学习汽修入手比较快,学习难度不是很大,只要多练习,刻苦多问

热心网友 时间:2022-03-03 17:33

黑马python3的视频教程可以先看看简单易学

热心网友 时间:2022-03-03 21:05

去冒泡IT看看,提升技术

热心网友 时间:2022-03-04 00:53

Python学习路线。

第一阶段Python基础与Linux数据库。这是Python的入门阶段,也是帮助零基础学员打好基础的重要阶段。你需要掌握Python基本语法规则及变量、逻辑控制、内置数据结构、文件操作、高级函数、模块、常用标准库模块、函数、异常处理、MySQL使用、协程等知识点。

学习目标:掌握Python基础语法,具备基础的编程能力;掌握Linux基本操作命令,掌握MySQL进阶内容,完成银行自动提款机系统实战、英汉词典、歌词解析器等项目。

第二阶段WEB全栈。这一部分主要学习Web前端相关技术,你需要掌握HTML、CSS、JavaScript、jQuery、BootStrap、Web开发基础、VUE、Flask Views、Flask模板、 数据库操作、Flask配置等知识。

学习目标:掌握WEB前端技术内容,掌握WEB后端框架,熟练使用Flask、Tornado、Django,可以完成数据监控后台的项目。

第三阶段数据分析+人工智能。这部分主要是学习爬虫相关的知识点,你需要掌握数据抓取、数据提取、数据存储、爬虫并发、动态网页抓取、scrapy框架、分布式爬虫、爬虫攻防、数据结构、算法等知识。

学习目标:可以掌握爬虫、数据采集,数据机构与算法进阶和人工智能技术。可以完成爬虫攻防、图片马赛克、电影推荐系统、地震预测、人工智能项目等阶段项目。

第四阶段高级进阶。这是Python高级知识点,你需要学习项目开发流程、部署、高并发、性能调优、Go语言基础、区块链入门等内容。

学习目标:可以掌握自动化运维与区块链开发技术,可以完成自动化运维项目、区块链等项目。

按照上面的Python学习路线图学习完后,你基本上就可以成为一名合格的Python开发工程师。当然,想要快速成为企业竞聘的精英人才,你需要有好的老师指导,还要有较多的项目积累实战经验。

自学本身难度较高,一步一步学下来肯定全面且扎实,如果自己有针对性的想学哪一部分,可以直接跳过暂时不需要的针对性的学习自己需要的模块,可以多看一些不同的视频学习。系统学习一般在5-6个月。

热心网友 时间:2022-03-04 04:57

感觉有本书你学的差不多了就基本具备了一名合格的python编程工程师,不过可惜的是这本书没有电子版,只有纸质的。

第 1章 从数学建模到人工智能

1.1 数学建模
1.1.1 数学建模与人工智能
1.1.2 数学建模中的常见问题
1.2 人工智能下的数学
1.2.1 统计量
1.2.2 矩阵概念及运算
1.2.3 概率论与数理统计
1.2.4 高等数学——导数、微分、不定积分、定积分

第2章 Python快速入门

2.1 安装Python
2.1.1 Python安装步骤
2.1.2 IDE的选择
2.2 Python基本操作
2.2.1 第 一个小程序
2.2.2 注释与格式化输出
2.2.3 列表、元组、字典
2.2.4 条件语句与循环语句
2.2.5 break、continue、pass
2.3 Python高级操作
2.3.1 lambda
2.3.2 map
2.3.3 filter

第3章 Python科学计算库NumPy

3.1 NumPy简介与安装
3.1.1 NumPy简介
3.1.2 NumPy安装
3.2 基本操作
3.2.1 初识NumPy
3.2.2 NumPy数组类型
3.2.3 NumPy创建数组
3.2.4 索引与切片
3.2.5 矩阵合并与分割
3.2.6 矩阵运算与线性代数
3.2.7 NumPy的广播机制
3.2.8 NumPy统计函数
3.2.9 NumPy排序、搜索
3.2.10 NumPy数据的保存

第4章 常用科学计算模块快速入门

4.1 Pandas科学计算库
4.1.1 初识Pandas
4.1.2 Pandas基本操作
4.2 Matplotlib可视化图库
4.2.1 初识Matplotlib
4.2.2 Matplotlib基本操作
4.2.3 Matplotlib绘图案例
4.3 SciPy科学计算库
4.3.1 初识SciPy
4.3.2 SciPy基本操作
4.3.3 SciPy图像处理案例
第5章 Python网络爬虫
5.1 爬虫基础
5.1.1 初识爬虫
5.1.2 网络爬虫的算法
5.2 爬虫入门实战
5.2.1 调用API
5.2.2 爬虫实战
5.3 爬虫进阶—高效率爬虫
5.3.1 多进程
5.3.2 多线程
5.3.3 协程
5.3.4 小结

第6章 Python数据存储

6.1 关系型数据库MySQL
6.1.1 初识MySQL
6.1.2 Python操作MySQL
6.2 NoSQL之MongoDB
6.2.1 初识NoSQL
6.2.2 Python操作MongoDB
6.3 本章小结
6.3.1 数据库基本理论
6.3.2 数据库结合
6.3.3 结束语

第7章 Python数据分析

7.1 数据获取
7.1.1 从键盘获取数据
7.1.2 文件的读取与写入
7.1.3 Pandas读写操作
7.2 数据分析案例
7.2.1 普查数据统计分析案例
7.2.2 小结

第8章 自然语言处理

8.1 Jieba分词基础
8.1.1 Jieba中文分词
8.1.2 Jieba分词的3种模式
8.1.3 标注词性与添加定义词
8.2 关键词提取
8.2.1 TF-IDF关键词提取
8.2.2 TextRank关键词提取
8.3 word2vec介绍
8.3.1 word2vec基础原理简介
8.3.2 word2vec训练模型
8.3.3 基于gensim的word2vec实战

第9章 从回归分析到算法基础

9.1 回归分析简介
9.1.1 “回归”一词的来源
9.1.2 回归与相关
9.1.3 回归模型的划分与应用
9.2 线性回归分析实战
9.2.1 线性回归的建立与求解
9.2.2 Python求解回归模型案例
9.2.3 检验、预测与控制

第10章 从K-Means聚类看算法调参

10.1 K-Means基本概述
10.1.1 K-Means简介
10.1.2 目标函数
10.1.3 算法流程
10.1.4 算法优缺点分析
10.2 K-Means实战

第11章 从决策树看算法升级

11.1 决策树基本简介
11.2 经典算法介绍
11.2.1 信息熵
11.2.2 信息增益
11.2.3 信息增益率
11.2.4 基尼系数
11.2.5 小结
11.3 决策树实战
11.3.1 决策树回归
11.3.2 决策树的分类

第12章 从朴素贝叶斯看算法多变 193

12.1 朴素贝叶斯简介
12.1.1 认识朴素贝叶斯
12.1.2 朴素贝叶斯分类的工作过程
12.1.3 朴素贝叶斯算法的优缺点
12.2 3种朴素贝叶斯实战

第13章 从推荐系统看算法场景

13.1 推荐系统简介
13.1.1 推荐系统的发展
13.1.2 协同过滤
13.2 基于文本的推荐
13.2.1 标签与知识图谱推荐案例
13.2.2 小结

第14章 从TensorFlow开启深度学习之旅

14.1 初识TensorFlow
14.1.1 什么是TensorFlow
14.1.2 安装TensorFlow
14.1.3 TensorFlow基本概念与原理
14.2 TensorFlow数据结构
14.2.1 阶
14.2.2 形状
14.2.3 数据类型
14.3 生成数据十二法
14.3.1 生成Tensor
14.3.2 生成序列
14.3.3 生成随机数
14.4 TensorFlow实战

希望对你有帮助!!!

贵在坚持,自己掌握一些,在工作中不断打磨,高薪不是梦!!

热心网友 时间:2022-03-04 09:19

Python分享希望可以帮到大家,记得下载保存
https://pan.baidu.com/s/1hSxsi47Fz7iN2vRN9JVxjg&sourse=bd

热心网友 时间:2022-03-04 13:57

Python介绍

Python的创始人为吉多·范罗苏姆(Guido van Rossum)。1989年的圣诞节期间,Guido开始写Python语言的编译器。Python这个名字,来自Guido所挚爱的电视剧Monty Python’s Flying Circus。他希望这个新的叫做Python的语言,能符合他的理想:创造一种C和shell之间,功能全面,易学易用,可拓展的语言。

最新的TIOBE排行榜,Python赶超C++占据第3, 与Java、C一起成为全球最流行的3大编程语言。

Python崇尚优美、清晰、简单,上手简单,非常适合做为第一门编程语言来学习。

Python可以应用于众多领域,如:数据分析、组件集成、网络服务、图像处理、数值计算和科学计算等众多领域。目前业内几乎所有大中型互联网企业都在使用Python,如:Youtube、Dropbox、BT、Quora(中国知乎)、豆瓣、知乎、Google、Yahoo!、*、NASA、百度、腾讯、汽车之家、美团等。

目前Python主要应用领域:

    WEB开发——最火的Python web框架Django, 支持异步高并发的Tornado框架,短小精悍的flask,bottle, Django官方的标语把Django定义为the framework for perfectionist with deadlines(大意是一个为完全主义者开发的高效率web框架)

    网络编程——支持高并发的Twisted网络框架, py3引入的asyncio使异步编程变的非常简单

    爬虫——爬虫领域,Python几乎是霸主地位,Scrapy\Request\BeautifuSoap\urllib等,想爬啥就爬啥

    云计算——目前最火最知名的云计算框架就是OpenStack,Python现在的火,很大一部分就是因为云计算

    人工智能、数据分析—— Python 是目前公认的人工智能和数据分析领域的必备语言

    自动化运维——问问中国的每个运维人员,运维人员必须会的语言是什么?10个人相信会给你一个相同的答案,它的名字叫Python

    金融分析——我个人之前在金融行业,10年的时候,我们公司写的好多分析程序、高频交易软件就是用的Python,到目前,Python是金融分析、量化交易领域里用的最多的语言

    科*算—— 97年开始,NASA就在大量使用Python在进行各种复杂的科*算,随着NumPy, SciPy, Matplotlib, Enthought librarys等众多程序库的开发,使的Python越来越适合于做科学计算、绘制高质量的2D和3D图像。和科学计算领域最流行的商业软件Matlab相比,Python是一门通用的程序设计语言,比Matlab所采用的脚本语言的应用范围更广泛

    游戏开发——在网络游戏开发中Python也有很多应用。相比Lua or C++,Python 比 Lua 有更高阶的抽象能力,可以用更少的代码描述游戏业务逻辑,与 Lua 相比,Python 更适合作为一种 Host 语言,即程序的入口点是在 Python 那一端会比较好,然后用 C/C++ 在非常必要的时候写一些扩展。Python 非常适合编写 1 万行以上的项目,而且能够很好地把网游项目的规模控制在 10 万行代码以内。另外据我所知,知名的游戏<文明> 就是用Python写的

    Python在一些公司的应用:

    谷歌:Google App Engine 、code.google.com 、Google earth 、谷歌爬虫、Google广告等项目都在大量使用Python开发

    CIA: 美国中情局网站就是用Python开发的

    NASA: 美国航天局(NASA)大量使用Python进行数据分析和运算

    *:世界上最大的视频网站*就是用Python开发的

    Dropbox:美国最大的在线云存储网站,全部用Python实现,每天网站处理10亿个文件的上传和下载

    Instagram:美国最大的图片分享社交网站,每天超过3千万张照片被分享,全部用python开发

    *:大量的基础库均通过Python实现的

    Redhat: 世界上最流行的Linux发行版本中的yum包管理工具就是用python开发的

    豆瓣: 公司几乎所有的业务均是通过Python开发的

    知乎: 国内最大的问答社区,通过Python开发(国外Quora)

    春雨医生:国内知名的在线医疗网站是用Python开发的

    除上面之外,还有搜狐、金山、腾讯、盛大、网易、百度、阿里、淘宝 、土豆、新浪、果壳等公司都在使用Python完成各种各样的任务。

    Python的发展史

    1989年,Guido开始写Python语言的编译器。

    1991年,第一个Python编译器诞生。它是用C语言实现的,并能够调用C语言的库文件。从一出生,Python已经具有了:类,函数,异常处理,包含表和词典在内的核心数据类型,以及模块为基础的拓展系统。

    Granddaddy of Python web frameworks, Zope 1 was released in 1999

    Python 1.0 - January 1994 增加了 lambda, map, filter and rece.

    Python 2.0 - October 16, 2000,加入了内存回收机制,构成了现在Python语言框架的基础

    Python 2.4 - November 30, 2004, 同年目前最流行的WEB框架Django 诞生

    Python 2.5 - September 19, 2006

    Python 2.6 - October 1, 2008

    Python 2.7 - July 3, 2010

    In November 2014, it was announced that Python 2.7 would be supported until 2020, and reaffirmed that there would be no 2.8 release as users were expected to move to Python 3.4+ as soon as possible

    Python 3.0 - December 3, 2008 (这里要解释清楚 为什么08年就出3.0,2010年反而又推出了2.7?是因为3.0不向下兼容2.0,导致大家都拒绝升级3.0,无奈官方只能推出2.7过渡版本)

    Python 3.1 - June 27, 2009

    Python 3.2 - February 20, 2011

    Python 3.3 - September 29, 2012

    Python 3.4 - March 16, 2014

    Python 3.5 - September 13, 2015

    Python 3.6 - 2016-12-23 发布python3.6.0版

    Python的发展前景怎么样?

    知乎上有一篇文章,问Python未来10年的发展前景,请去看一下Alex的回答

    未来十年Python的前景会怎样? https://www.hu.com/question/22112542/answer/166053516

    Python 2 or Python 3 ?

    In summary : Python 2.x is legacy, Python 3.x is the present and future of the language

    Python 3.0 was released in 2008. The final 2.x version 2.7 release came out in mid-2010, with a statement of

    extended support for this end-of-life release. The 2.x branch will see no new major releases after that. 3.x is

    under active development and has already seen over five years of stable releases, including version 3.3 in 2012,

    3.4 in 2014, and 3.5 in 2015. This means that all recent standard library improvements, for example, are only

    available by default in Python 3.x.

    Guido van Rossum (the original creator of the Python language) decided to clean up Python 2.x properly, with less regard for backwards compatibility than is the case for new releases in the 2.x range. The most drastic improvement is the better Unicode support (with all text strings being Unicode by default) as well as saner bytes/Unicode separation.

    Besides, several aspects of the core language (such as print and exec being statements, integers using floor division) have been adjusted to be easier for newcomers to learn and to be more consistent with the rest of the language, and old cruft has been removed (for example, all classes are now new-style, "range()" returns a memory efficient iterable, not a list as in 2.x).

    目前虽然业内不少企业还在大量使用 2.7,因为旧项目几十万甚至上百万行的代码想快速升级到3.0不是件容易的事,但是大家在开发新项目时几乎都会使用3.x。

    另外Python3 确实想比2.x做了很多的改进,直观点来讲,就像从XP升级到Win7的感觉一样,棒棒的。

    Py2 和Py3的具体细节区别我们在以后课程中会慢慢深入。

    Python的优缺点

    先看优点

    Python的定位是“优雅”、“明确”、“简单”,所以Python程序看上去总是简单易懂,初学者学Python,不但入门容易,而且将来深入下去,可以编写那些非常非常复杂的程序。

    开发效率非常高,Python有非常强大的第三方库,基本上你想通过计算机实现任何功能,Python官方库里都有相应的模块进行支持,直接下载调用后,在基础库的基础上再进行开发,大大降低开发周期,避免重复造轮子。

    高级语言————当你用Python语言编写程序的时候,你无需考虑诸如如何管理你的程序使用的内存一类的底层细节

    可移植性————由于它的开源本质,Python已经被移植在许多平台上(经过改动使它能够工 作在不同平台上)。如果你小心地避免使用依赖于系统的特性,那么你的所有Python程序无需修改就几乎可以在市场上所有的系统平台上运行

    可扩展性————如果你需要你的一段关键代码运行得更快或者希望某些算法不公开,你可以把你的部分程序用C或C++编写,然后在你的Python程序中使用它们。

    可嵌入性————你可以把Python嵌入你的C/C++程序,从而向你的程序用户提供脚本功能。

    再看缺点:

    速度慢,Python 的运行速度相比C语言确实慢很多,跟JAVA相比也要慢一些,因此这也是很多所谓的大牛不屑于使用Python的主要原因,但其实这里所指的运行速度慢在大多数情况下用户是无法直接感知到的,必须借助测试工具才能体现出来,比如你用C运一个程序花了0.01s,用Python是0.1s,这样C语言直接比Python快了10倍,算是非常夸张了,但是你是无法直接通过肉眼感知的,因为一个正常人所能感知的时间最小单位是0.15-0.4s左右,哈哈。其实在大多数情况下Python已经完全可以满足你对程序速度的要求,除非你要写对速度要求极高的搜索引擎等,这种情况下,当然还是建议你用C去实现的。

    代码不能加密,因为PYTHON是解释性语言,它的源码都是以名文形式存放的,不过我不认为这算是一个缺点,如果你的项目要求源代码必须是加密的,那你一开始就不应该用Python来去实现。

    线程不能利用多核问题,这是Python被人诟病最多的一个缺点,GIL即全局解释器锁(Global Interpreter Lock),是计算机程序设计语言解释器用于同步线程的工具,使得任何时刻仅有一个线程在执行,Python的线程是操作系统的原生线程。在Linux上为pthread,在Windows上为Win thread,完全由操作系统调度线程的执行。一个python解释器进程内有一条主线程,以及多条用户程序的执行线程。即使在多核CPU平台上,由于GIL的存在,所以禁止多线程的并行执行。关于这个问题的折衷解决方法,我们在以后线程和进程章节里再进行详细探讨。

    当然,Python还有一些其它的小缺点,在这就不一一列举了,我想说的是,任何一门语言都不是完美的,都有擅长和不擅长做的事情,建议各位不要拿一个语言的劣势去跟另一个语言的优势来去比较,语言只是一个工具,是实现程序设计师思想的工具,就像我们之前中学学几何时,有的时候需要要圆规,有的时候需要用三角尺一样,拿相应的工具去做它最擅长的事才是正确的选择。之前很多人问我Shell和Python到底哪个好?我回答说Shell是个脚本语言,但Python不只是个脚本语言,能做的事情更多,然后又有钻牛角尖的人说完全没必要学Python, Python能做的事情Shell都可以做,只要你足够牛B,然后又举了用Shell可以写俄罗斯方块这样的游戏,对此我能说表达只能是,不要跟SB理论,SB会把你拉到跟他一样的高度,然后用充分的经验把你*。

热心网友 时间:2022-03-04 18:51

最近读了这本书《head first python》,觉得蛮不错的,可以借鉴噢~

一直以来,角色 head first 系列的读物,对于入门者都非常适合

head first python - 京东

声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com