...BC=8CM,若将矩形折叠,使点B与D重合,求折痕EF的长.

发布网友 发布时间:2024-10-23 12:29

我来回答

2个回答

热心网友 时间:4分钟前

方法一:

不失一般性,设E、F分别在AD、BC上。

显然有:B、D关于EF对称,∴EF为BD的垂直平分线,∴BO=DO=BD/2。

∵ABCD是矩形,∴AD⊥AB、AD=BC=8cm,

∴由勾股定理,有:BD=√(AD^2+AB^2)=√(64+36)=10(cm),∴DO=5cm。

∵∠EDO=∠BDA、∠DOE=∠DAB=90°,∴△DOE∽△DAB,∴EO/AB=DO/AD,

∴EO=AB×DO/AD=6×5/8=(15/4)(cm)。

∵ABCD是矩形,∴DE∥FB,∴∠DEF=∠BFE。

∵EO⊥BD、BO=DO,∴∠DEF=∠BEF,∴∠BEF=∠BFE,∴BE=BF。

由BE=BF、BO⊥EF,得:EF=2EO=(15/2)cm。

方法二:

不失一般性,设E、F分别在AD、BC上。

过A作AG∥EF交BC于G,令AG与BD相交于H。

∵ABCD是矩形,∴AD⊥AB、AD=BC=8cm。

由勾股定理,有:BD=√(AD^2+AB^2)=√(64+36)=10(cm)。

由三角形面积公式,有:△ABD的面积=(1/2)BD×AH=(1/2)AD×AB,

∴AH=AD×AB/BD=8×6/10=(24/5)(cm)。

∵ABCD是矩形,∴AB⊥BG,∴由射影定理,有:AH×AG=AB^2=36,

∴AG=36/(24/5)=(15/2)(cm)。

∵ABCD是矩形,∴AE∥GF,又AG∥EF,∴AEFG是平行四边形,∴EF=AG=(15/2)cm。

热心网友 时间:4分钟前

折痕交AD于E
交BC于F
连接BE
BD
交EF于点0
则BD=ED
设BE=x
则AE=8-x
在直角厶ABE中[8-x]方+6方=x方
x=6.25
即BE=6.25
又AB=6
AD=BC=8
所以BD=10
所以BO=5
用勾股定理求出EO=3.75
所以EF=3.75X2=7.5
望采纳
声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com