怎样用初等数学证明数列{1,1}收敛?

发布网友 发布时间:2024-10-23 21:01

我来回答

1个回答

热心网友 时间:2024-11-03 14:01

解答过程如下:

^^e^tan-e^x=e^x(e^(tanx-x)-1),x→0时,e^x→1,e^(tanx-x)-1等价于tanx-x。

所以e^tan-e^x等价于tanx-x。

所以,x→0时,tanx-x等价于x^n,所以

1=lim(x→0) (tanx-x)/x^n

=lim(x→0) ((secx)^2-1)/nx^(n-1)

=lim(x→0) (tanx)^2/nx^(n-1)

=lim(x→0) x^2/nx^(n-1)

=lim(x→0) x^(3-n)/n

所以n=3。

几何意义:

1、在区间(a-ε,a+ε)之外至多只有N个(有限个)点。

2、所有其他的点xN+1,xN+2,(无限个)都落在该邻域之内。这两个条件缺一不可,如果一个数列能达到这两个要求,则数列收敛于a;而如果一个数列收敛于a,则这两个条件都能满足。

换句话说,如果只知道区间(a-ε,a+ε)之内有{xn}的无数项,不能保证(a-ε,a+ε)之外只有有限项,是无法得出{xn}收敛于a的,在做判断题的时候尤其要注意这一点。

    

声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com