1/x+1/(y+z)=1/3,1/y+1/(x+z)=1/4, 1/z+1/(x+y)=1/5.求X、Y、Z的值
发布网友
发布时间:2024-10-23 21:28
我来回答
共2个回答
热心网友
时间:2024-11-10 20:36
1/x+1/(y+Z)=1/3
1/y+1/(x+z)=1/4
1/z+1/(x+y)=1/5
三个方程左边通分得
(x+y+z)/[x(y+z)]=1/3
(x+y+z)/[y(x+z)]=1/4
(x+y+z)/[z(x+y)]=1/5
所以
x(y+z)=3(x+y+z)
x+y+z=x(y+z)/3..........1
y(x+z)=4(x+y+z)
x+y+z=y(x+z)/4..........2
z(x+y)=5(x+y+z)
x+y+z=z(x+y)/5..........3
由1式,2式得
(xy+xz)×4=(xy+yz)×3
xy=3yz-4xz
3yz=xy+4xz...............4
由1式,3式得
x(y+z)/3=z(x+y)/5
5x(y+z)=3z(x+y)
2xz=3yz-5xy
3yz=2xz+5xy...........5
由4式,5式得
xy+4xz=2xz+5xy
2xz=4xy
z=2y...............6
将6式代入4式得
3yz=xy+4xz
6y^2=xy+8xy
6y=9x
x=2y/3...............7
将6式,7式代入x(y+z)=3(x+y+z)得
x(y+z)=3(x+y+z)
2y/3(y+2y)=3(2y/3+y+2y)
2y^2=3*11y/3
2y=11
y=11/2
x=2y/3=(11/2)*2/3=11/3
z=2y=11/2*2=11
热心网友
时间:2024-11-10 20:29
1/x+1/(y+Z)=1/2
1/y+1/(x+z)=1/3
1/z+1/(x+y)=1/4
三个方程左边通分得
(x+y+z)/(x(y+z)=1/2
(x+y+z)/(y(x+z))=1/3
(x+y+z)/(z(x+y))=1/4
所以
x(y+z)=2(x+y+z)
方程1
y(x+z)=3(x+y+z)
方程2
z(x+y)=4(x+y+z)
方程3
方程1和方程2化简得
(xy+xz)×3=(xy+yz)×2
xy=2yz-3xz
方程1和方程3化简得
2(xy+xz)=xz+yz
2xy=yz-xz
所以4yz-6xz=yz-xz
3yz=5xz
x=0.6y
把x=0.6y
代入方程2xy=yz-xz
1.2y^2=0.4yz
z=3y
把x=0.6y,z=3y代入方程x(y+z)=2(x+y+z)
得出
0.6y×4y=2(0.6y+y+3y)
2.4y^2=9.2y
y=23/6
所以x=0.6×23/6=2.3
z=3×23/6=11.5
所以x=2.3,y=23/6,z=11.5