如图,△abc,△ade都是等边三角形,点d在bc上 求证(1)bd=ce(2)ac=dc...
发布网友
发布时间:2024-10-24 00:23
我来回答
共1个回答
热心网友
时间:6分钟前
一起写过
考点:平行四边形的判定;全等三角形的判定与性质;等边三角形的性质.
专题:证明题.
分析:因为△ABE和△ACD中的边是等边三角形△ABC和△ADE一些边,因此很容易证得两组对应边相等,再根据等边三角形中角都为60°,可证得一组对应角相等,从而证得全等;根据平行四边形的判定一组对边平行且相等是平行四边形,根据条件可证EF∥DC,EF=DC.
解答:证明:(1)∵△ABC和△ADE都是等边三角形,
∴AE=AD,AB=AC,∠EAD=∠BAC=60°,
∴∠EAD-∠BAD=∠BAC-∠BAD,
即:∠EAB=∠DAC,
∴△ABE≌△ACD(SAS);
(2)证明:∵△ABE≌△ACD,
∴BE=DC,∠EBA=∠DCA,
又∵BF=DC,
∴BE=BF.
∵△ABC是等边三角形,
∴∠DCA=60°,
∴△BEF为等边三角形.
∴∠EFB=60°,EF=BF
∵△ABC是等边三角形,
∴∠ABC=60°,
∴∠ABC=∠EFB,
∴EF∥BC,即EF∥DC,
∵EF=BF,BF=DC,
∴EF=DC,
∴四边形EFCD是平行四边形.
点评:本题考查全等三角形的判定和性质,以及平行四边形的判定定理.