...=(1/3)^x,x∈[-1,1]函数g(x)=f^2(x)-2af(x)+3的最小值为h(a),求h...

发布网友 发布时间:2024-10-24 01:56

我来回答

1个回答

热心网友 时间:2024-10-25 11:48

1.函数f(x)=(1/3)^x,x∈[-1,1],
由指数函数单调性可知,1/3≤f(x)≤3,
设t=f(x),则t∈[1/3,3],
g(x)=t²-2at+3,
①当a≤1/3时,h(a)=g(1/3)= -(2a/3)+28/9;
②当1/3<a<3时,h(a)=g(a)= -a²+3;
③当x≥3时,h(a)=g(3)= -6a+12.
∴{h(a)= -(2a/3)+28/9,(a≤1/3);h(a)= -a²+3,(1/3<a<3);h(a)= -6a+12,(x≥3).

2.∵f(x)=x²+bx+c为偶函数,∴b=0,f(x)= x² +c,
又曲线y=f(x)过点(2,5),∴c=1,f(x)=x²+1.

g(x)=(x+a)f(x)=(x+a)(x²+1)=x³+ax²+x+1,
g′(x)=3x²+2ax+1,

(1)∵曲线y=g(x)有斜率为0的切线,
∴3x²+2ax+1=0有解,
故△=4a²-12≥0,得a≤-√3,或a≥√3,
即a的取值范围是a≤-√3,或a≥√3.

(2)∵当x= -1时,函数g(x)取得极值,
∴g′(-1)=0,即3×(-1)²+2a×(-1)+1=0,得a=2,

g(x)= x³+2x²+x+1,g′(x)=3x²+4x+1=(3x+1)(x+1),
∴当x< -1时,g′(x)>0,g(x)为增函数;
当-1<x<-1/3时,g′(x)<0,g(x)为减函数;
当x> -1/3时,g′(x)>0,g(x)为增函数;
∴当x= -1时,g(x)取极大值g(-1)=1;
当x= -1/3时,g(x)取极小值g(-1/3)= 23/27,

要使方程g(x)+b=0有三个不同的实数解,则23/27< -b<1,即 -1<b<-23/27,
∴b的取值范围是(-1,-23/27).

3.设F(x)=f(x)-g(x),x∈[a,b],
则F′(x)= f′(x)-g′(x),
由题意,F′(x)>0,
∴F(x)在[a,b]上为增函数,
∴当a<x<b时,F(a)<F(x)<F(b),即f(a)-g(a)<f(x)-g(x)< f(b)-g(b),
∴f(x)+g(a)>g(x)+f(a),f(x)+g(b)<g(x)+f(b).
故选C.
声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com