如图,已知OA平分∠BAC,∠1=∠2求证(1)△ABC是等腰三角形 (2)若要...

发布网友 发布时间:2024-10-24 04:00

我来回答

5个回答

热心网友 时间:2024-11-09 10:56

(1) 证明:作OE⊥AB于E,OF⊥AC于F,
∵AO平分∠BAC,
∴∠3=∠4,
∴OE=OF
∵∠1=∠2,
∴OB=OC.
∴Rt△OBE≌Rt△OCF(HL).
∴∠ABO=∠ACO.
∴∠1+∠ABO=∠2+∠ACO.
即∠ABC=∠ACB.
∴AB=AC.
∴△ABC是等腰三角形.
(2) ∠BAC=60°

热心网友 时间:2024-11-09 10:58

证明:∵OA平分∠BAC
∴∠BAO=∠CAO
∵∠1=∠2
∴OB=OC
∵AO=AO
∴△ABO≌△ACO
∴AB=AC
∴△ABC是等腰三角形

热心网友 时间:2024-11-09 10:54

证明出∠3=∠4是不是多余的,只要证明一个全等 而且条件中不要这个啊,怎么都有这个呢?抄袭严重啊、还是我理解错了啊

热心网友 时间:2024-11-09 10:56

证明:作OE⊥AB于E,OF⊥AC于F,
∵AO平分∠BAC,
∴∠3=∠4,
∴OE=OF(角平分线上的点到角两边的距离相等).
∵∠1=∠2,
∴OB=OC.
∴Rt△OBE≌Rt△OCF(HL).
∴∠5=∠6.
∴∠1+∠5=∠2+∠6.
即∠ABC=∠ACB.
∴AB=AC.
∴△ABC是等腰三角形.

热心网友 时间:2024-11-09 10:58

几分尴尬
声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com