求教vfp大仙已知三角形的三条边a,b,c,求面积
发布网友
发布时间:2024-10-24 13:03
我来回答
共1个回答
热心网友
时间:2024-11-07 08:49
已知三角形的三边分别是a、b、c,
先算出周长的一半s=1/2(a+b+c)
则该三角形面积S=根号[s(s-a)(s-b)(s-c)]
这个公式叫海伦——秦九昭公式
证明:
设三角形的三边a、b、c的对角分别为A、B、C,
则根据余弦定理c²=a²+b²-2ab·cosC,得
cosC = (a²+b²-c²)/2ab
S=1/2*ab*sinC
=1/2*ab*√(1-cos²C)
=1/2*ab*√[1-(a²+b²-c²)²/4a²b²]
=1/4*√[4a²b²-(a²+b²-c²)²]
=1/4*√[(2ab+a²+b²-c²)(2ab-a²-b²+c²)]
=1/4*√{[(a+b)²-c²][c²-(a-b)²]}
=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]
设s=(a+b+c)/2
则s=(a+b+c), s-a=(-a+b+c)/2, s-b=(a-b+c)/2, s-c=(a+b-c)/2,
上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]
=√[s(s-a)(s-b)(s-c)]
所以,三角形ABC面积S=√[s(s-a)(s-b)(s-c)]
证明完毕
{*是乘号的意思,√是根号的意思}