高数常微分方程 xy'+e^y=1 y=-in2 x=1 求方程的特解

发布网友 发布时间:2024-10-24 02:23

我来回答

1个回答

热心网友 时间:3分钟前

xy'+e^y=1
xy'=1-e^y
dy/(1-e^y)=1/xdx
两边积分:
fdy/(1-e^y)=lnx+c
左边设1-e^y=t y=ln(1-t) dy=-dt/(1-t)
f1/t *(-1/(1-t))dt=f[1/(t-1)-1/t]dt=ln((t-1)/t)+C=-ln[(e^y-1)/e^y]
-ln[(e^y-1)/e^y]=lnx+c
(e^y-1)/e^y=C1/x
y=-ln2 x=1
1-2=c1/x
c1=-1
(1-e^y)/e^y=1/x
e^y=x-xe^y
e^y(1+x)=x
e^y=x/(1+x)
方法正确,自已再算一下。
声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com