发布网友 发布时间:2022-03-03 17:09
共3个回答
热心网友 时间:2022-03-03 18:39
首先先了解Python语言的四大发展方向。目前Python的主要方向有web后端开发、大数据分析网络爬虫和人工智能,当然如果再细分的话还有自动化测试、运维等方向。
在学习Python的基础语法时,并不需要太多的基础,基本只要熟练使用电脑日常功能并对Python感兴趣就可以了,但如果想要在人工智能领域方向发展的话,线性代数、概率、统计等高等数学知识基本是必需的,原因在于这些知识能够让你的逻辑更加清晰,在编程过程中有更强的思路。
分享一个千锋Python的学习大纲给你
第一阶段 - Python 数据科学
Python 基础语法
入门及环境安装 、基本语法与数据类型、控制语句、错误及异常、错误处理方法、异常处理方法 、常用内置函数 、函数创建与使用、Python 高级特性、高级函数、Python 模块、PythonIO 操作 、日期与时间 、类与面向对象 、Python 连接数据库
Python 数据清洗
数字化 Python 模块Numpy、数据分析利器Pandas、Pandas 基本操作、Pandas 高级操作
Python 数据可视化
数据可视化基础、MLlib(RDD-Base API)机器学习、MatPlotlib 绘图进阶、高级绘图工具
第二阶段 - 商业数据可视化
Excel 业务分析
Excel 基础技能、Excel 公式函数、图表可视化、人力 & 财务分析案例、商业数据分析方法、商业数据分析报告
Mysql 数据库
Mysql 基础操作(一)、Mysql 基础操作(二)、Mysql 中级操作、Mysql 高级操作、电商数据处理案例
PowerBI
初级商业智能应用 (PowerQuery)、初级商业智能应用 (PowerPivot)、初级商业智能应用案例、存储过程、PowerBI Desktop 案例、PowerBI Query 案例
统计学基础
微积分、线性代数基础、统计基础
Tableau
Tableau 基本操作、Tableau 绘图、Tableau 数据分析、Tableau 流量分析
SPSS
客户画像、客户价值模型、神经网络、决策树、时间序列
第三阶段 - Python 机器学习
Python 统计分析
数据准备、一元线性回归、多元线性回归、一般 logistic 回归、ogistic 回归与修正
Python 机器学习基础
机器学习入门、KNN 讲义、模型评估方法、模型优化方法、Kmeans、DBSCAN、决策树算法实战
Python 机器学习中级
线性回归、模型优化方法、逻辑回归、朴素贝叶斯、关联规则、协同过滤、推荐系统案例
Python 机器学习高级
集成算法 - 随机森林、集成算法 -AdaBoost、数据处理和特征工程、SVM、神经网络、XGBoost
第四阶段 - 项目实战
电商市场数据挖掘项目实战
项目背景 & 业务逻辑 、指定分析策略 、方法实现与结果 、营销活动设计及结果评价 、撰写数据分析报告
金融风险信用评估项目实战
项目背景 & 业务逻辑 、建模准备 、数据清洗 、模型训练 、模型评估 、模型部署与更新
第五阶段 - 数据采集
爬虫类库解析 、数据解析 、动态网页提取 、验证码、IP 池 、多线程爬虫 、反爬应对措施 、scrapy 框架
第六阶段 - 企业课
团队户外拓展训练 、企业合作项目课程 、管理课程 、沟通表达训练 、职业素养课程
以上就是零基础Python学习路线的所有内容,希望对大家的学习有所帮助。
热心网友 时间:2022-03-03 19:57
1、买本书或者到网上找点基础资料热心网友 时间:2022-03-03 21:31
初学者学习python的路径大概是怎样的?